
PACIFIC MISSILE RANGE

POINT MUGU, CALIFORNIA

Technical Memorandum No. PMR-TM-63-6

A MATHEMATICAL FORMULATION AND SOLUTION
C0 OF A MULTIPLE-RESOURCE SCHEDULING PROBLEM

By
R. Y. Skarda, Jr.

Operations Research Group

1 May 1963 f* ~ - ln

-C Approved by:
L. A. LEAKE

Head, Operations Research Group

Dr. G. W. BRAUN
Chief Scientist

QUALIFIED REQUESTERS MAY OBTAIN COPIES
OF THIS REPORT DIRECT FROM ASTIA.

TABLE OF CONTENTS

Page

SUMMARY ... 1

INTRODUCTION ... 3

INITIAL PROBLEM FORMULATION 3
Definitions ... 3
Assumptions .. 6

THE ALGORITHM .. 6
Part I: Feasible Subsets .. 6
Part II: Selection of Schedules 12

GENERAL FORMULATION OF THE SCHEDULING PROBLEM 18
Modification 1: Special Time Assignments 19
Modification 2: Operations of Longer Duration 19
Modification 3: Change in the System 21

TABLES
Table 1. Initial Data for the Example, Operation and System Vectors S
Table 2. Subsets of Index 1 .. 6
Table 3. Subsets of Index 2 .. 7
Table 4. Subsets of Indexes 3, 4, and 5 10
Table 5. Feasible Subsets of Indexes 1 Through 5 12

ILLUSTRATIONS
Figure 1. Flow Chart for Part I of the Algorithm 9
Figure 2. Configuration Vectors in the Example 14
Figure 3. Flow Chart for Part II of the Algorithm 15
Figure 4. Example of an Operation With Fluctuating Resource Requirements

That the Algorithm Can Schedule Under Modification 2 (Operation A) 20
Figure 5. Example of an Operation With Fluctuating Resource Requirements

That the Algorithm Can Schedule Under Modification 3(Operation B) 21

II

SUMMARY

An algorithm is proposed for determining "optimal" ways of scheduling multiple operations,
each of which must be serviced by a number of resources simultaneously. The objective is to
allocate the resources on a time-scale such that all the desired 'operations may be completed in
the minimum time possible. By means of a selective searching procedure, the algorithm in effect
considers all possible allocations but in much less time than direct enumeration would entail.
The result is an "optimal" schedule or time sequence for operations. The basic inputs to the
algorithm are each operation's time requirements on each type of resource and a statement of the
resources which the servicing system has available for allocation. The procedure is deterministic
in the sense that the operational time requirements, which are in truth probabilistic, are assumed
to be known exactly.

The algorithm was developed as a possible means for scheduling operations on the Pacific
Missile Range. In that context, the many operations and even greater number of resource types
which must be considered necessitate the use of a large-scale digital computer to execute the
algorithm.

INTRODUCTION

This memorandum describes a formulation of an operation scheduling problem, involving
service by multiple resources, and provides an algorithm for finding "optimal" schedules. The
work described herein is part of a broad study to develop effective procedures for handling the
increasingly complex task of scheduling operations on the Pacific Missile Range. Two other
approaches 1 ' 2 have been made; one1 considers a different objective function, and the other2

partly motivated the approach of this paper. The second is limited, however, in that it treats
only a sequencing problem and requires as an input, sets of feasible operations (i.e., collections
of operations which, because of the multiple resources, may be executed simultaneously). The
algorithm given here generates optimal feasible subsets of the set of all operations and in
addition may be generalized to subsume the sequencing problem and hence provide optimal
schedules.

INITIAL PROBLEM FORMULATION

Definitions

A resource is any commodity used by the range to support certain missile testing operations.
This term includes portions of air and water space, segments of the radio-frequency spectrum, and
various instruments, such as radar, real-time computers, and optical gear. A resource can be
measured in terms of discrete units (as instruments are) or in arbitrary fractions of units (as seg-
ments of air space can be). Although time itself satisfies this definition of a resource, it will not
be treated as such in the following.

Conversely, an operation is considered abstractly as a requested assortment of resources of
various descriptions and quantities.

A resource type is a collection of resources, all fitting some particular description (kind of
commodity, location, etc.), which can be used interchangeably on certain missile tests. One
resource type may differ from another in containing a different kind of commodity. Or, certain
resource types which contain the same kind of commodity may differ because of their locations.
For example, four resource types might be

1. Radar on San hicolas Island
2. Radar at Point Mugu
3. Radar either at Point Mugu or on San Nicolas Island
4. Electronic computer

It is only necessary to consider resource types which contain commodities of limited supply and
which can thus affect scheduling considerations.

For the following definitions, h represents the number of resource types under consideration.

The support system is the totality of the resource types available to the range. It in repre-
sented mathematically by a k-dimensional system vector, where the dimensions correspond to
different resource types (taken In any preassigned order) and where the coefficient for each

IPacific Missile Range. Generalized Range Scheduling Problem, by R. J. Friabie. Point Mugu, Calif.,
PER, 20 Oct 1961. (PR Technical Memorandum No. PMR-TM-61-18) UNCLASSIFIED.

2Pacific Missile Range. An Approach to the Sequencing of Range Operations, by C. E. Wiler. Point Mugu,
Calif., PMR, 29 Apr 1963. (PMR Technical Memorandum No. PMR-TU-63-4) UNCLASSIFIED.

3

dimension represents the number of units available for scheduling of that particular resource type.-3

(A unit of a resource might be a single instrument or a communication channel.)

For example, the system vector, starting with the resource types in the example above, and in
the same order, would have the dimensions

(3,4, 7, 1),

if there were three radar installations on San Nicolas Island and four radar installations at Point
Mugu, with one electronic computer. The following dimensions represent other resource types. 4

Each operation is characterized by a similar k-dimensional operation vector representing the
resource types in the same order that the system vector does, where each coefficient represents that
operation's minimum requirement for the corresponding resource type. For example, an operation
simply requiring one radar either on San Nicolas Island or at Point Mugu would have the operation
vector

(0,0,1,0...).

On the other hand, an operation requiring one radar on San Nicolas Island and two radars at
Point Mugu would have the operation vector

(1, 2, 3, 0, i)I

since the requirements imply that three units are also required of the third resource type (radars
that are either on San Nicolas Island or at Point Mugu).

In treating resources of varying degrees of specificness in this manner, and in designating
certain resource types to represent likely resource requests, it is possible for the algorithm to
control many possibly complicated conflicts of resources while representing the resource require-
ments for an operation with an abstract vector.

The sum of two k-dimensional vectors is defined in the traditional mathematical sense; i.e.,
a k-dimensional vector, each component of which is the sum of the corresponding components in
te original two vectors. The sum of a finite number of k-dimensional vectors is defined similarly;
for example,

(0,1,2,3,....)
plus (1, 0, 0, 0, ..)

plus (1, 0, 1, 0, ..
equals (2, 1, 3, 3, ..).

The relation < is said to hold between two vectors if and only if it holds for all their respective
components:

for example, (0, 1, 2,3) (1, 2, 2,3)
(0,6,8,1) < (0,7,8,1)

3 It is an underlying assumption that these coefficients are all non-negativ .
4 By altering the system vector to correspond to possible changes in the resource strength of the range, it is

possible for the scheduling procedure to adjust for day-to-day breakdowns in equipment or to schedule
experimentally with hypothetical additions of equipment as the range pows.

4

but it is not true that

(0,6,0,0,.... (S,S,S,S...).

Given any two arbitrary vectors, the relation < does not necessarily hold in either direction.

The term subset will refer to a subset of the total set of operations under consideration. For
each subset, its subset vector is the sum of the vectors of the individual operations belonging to
that particular subset, each operation counting no more than once for each subset. The index of a
subset is the number of different operations it contains. For examples of these definitions, see
tables 1, 2 and 3.

A subset is called feasible if and only if its (subset) vector < the system vector. Feasibility
is equivalent to the possibility for the operations in the subset to be scheduled simultaneously
without conflicts in resource requirements.

Two subsets are called disjoint if they have no operation in common. Similarly, subsets in a
collection are disjoint if no two of the subsets have an operation in common. For example, the
following subsets are disjoint:

Operation [Operation E OperationDG

Opration C [operation 131 (OperationG
Operation FOperation

Jj
Operation

H

Table 1. Initial Data for the Example,
Operation and System Vectors

Operation Vectors

(0, 0, 1, 3, 0, 60, 0, 0.0, 1)

(0, 3, 2, 10, 0, 70, 1, 2.0, 0)

(0, 1, 4, 0, 15, 130, 0, 2.6, 1)

(1, 1, 3, 0, 16, 140, 0, 1.0, 2)

(1, 0, 6, 12, 0, 125, 0, 0.0, 0)

(0, 4, 5, 0, 12, 190, 0, 0.0, 0)

(0, 0, 0, 10, 8, 0, 1, 0.0, 2)

(0, 5, 2, 0, 9, 30, 0, 0.0, 0)

(0, 0, 2, 3, 0, 40, 1, 0.5, 0)

(0, 1, 4, 0, 6, 0, 0, 0.8, 1)

(1, 0, 1, 3, 0, 80, 0, 1.4, 0)

(0, 2, 0, 4, 5, 0, 1, 1.5, 0)

(0, 4, 1, 2, 26, 15, 0, 2.6, 1)

System Vector

(1, 6, 10, 15, 25, 220, 1, 3.0, 3)

5

TobI 2. Sbset of Iodex I

Poesible Subsets of Index 1

Operation 1 (0, 0, 1, 3, 0, 60, 0, 0.0, 1)

Opeution 2 (0, 3, 2, 10, 0, 70, 1. 2.0. 0)

Operation 3 (0, 1, 4, 0, 15, 130, 0, 2.6, 1)

Operation 4 (1, 1, 3, 0, 16, 140, 0, 1.0, 2)

Operation 5 (1, 0, 6, 12, 0, 125, 0, 0.0, 0)

Operatlon 6 (0, 4, 5, 0, 12, 190, 0, 0.0, 0)

Operation 7 (0, 0, 0, 10, 8, 0, 1, 0.0, 2)

Operation 8 (0, S, 2, 0, 9, 30, 0, 0.0, 0)

Operetion 9 (0, 0, 2, 3, 0, 40, 1, 0.5, 0)

Operation 10 (0, 1, 4, 0, 6, 0, 0, 0.8, 1)

Operation 11 (1, 0, 1, 3, 0, 80, 0, 1.4, 0)

Operation 12 (0, 2, 0, 4, 5, 0, 1, 1.5, 0)

Subset of Indox 1 Tested and Discarded

(0, 4, 1, 2, 26, 15, 0, 2.6, 1)

Assumptlens

The following assumptions are made principally to simplify the description of the algorithm:

1. The duration of each operation is one unit of time (e.g., 15 minutes or 1 hour).
2. Each operation can be scheduled for any time.
3. Each unit of a resource is used foe no more than one operation at any time.
4. The desired objective for this problem is to schedule d~l of the given operations into as few

units of time an possible, with some (feasible) subsets of operations scheduled simultane-
ously. This is tantamount to dividing the total set of operations into as few (disjoint)
feasible subsets as possible.

5. The scheduling process is to be finished before the first operation is executed.
6. The system vector is constant throughout the time to be scheduled.

In the generalized problem formulation, assumptions 1, 2, 3, and 6 are superseded by less
restrictive assumptions.

This algorithm does not concern itself with the relative economic or strategic values of these
operations.

THE ALGORITHM

Port I: Feasible Subsets

This pert of the algorithm determines all of the feasible subsets and lists them according to
index.

s

5 The division of the algorithm into two parts l Justified by the tendency for part I to contain most of the
arithmetic operations and for pert 12 to contain meet of the logical operations. Also, part I is the extent to
which the algorithm considers the system and operation vectors.

Table 3. Subsets of Index 2

Fuinudh hbmis M" oIm 2 L**s o hul 2 TW ad -m.a wdd

(1, 2] (0 3. -% 1, 130., 1. 20) 3, 61 (06 4. 6. 13. 12 .2X10, O A 1)

(1,3] (0, 1. , , , 190, 0 2.6, 2) [2. 31 to 4. 6, 10, M5 20 1.4.6, 1)

11, 4] (1, 1. 4, 3, 1 2oo, 0, 1.0, 3) (2. (1,3., , 22, 0 19& 1. 2.0, 0)
(1, 51 (1, 06 7, 15. 0 US, 0, 0.0, 1) [2, 6] (0, 7. , 10,2 ,26k 1. 2,, 0)

(1. 7] A 0 1, 13 , 60, 1, 0.0. 3) (2 7] (,3, 2, 2, 6, 70. 2, 2.0, 2)

[1. 6] (,5, 3, 3. 9, 9, . 0.0. 1) [2] (0 ,8. 4. 10, 9. W. 1. 2.0, 0)

[1, 9] (0, 0, 3, 6, 0, 100, 1. O5, 1) [2, 9] (0, 3. 4, 13, 0, 110, 2, 2.5, 0)

(1,10] (0. 1, 5, 3, 6, 60, 0. U., 2) [2,111 (1. 3, 3, 13, o. MD 1, 3.4, 0)

[1,11] (1, 0, 2, 6, 0, 140, 0, 1.4, 1) 2,1 (0 5, 2, 14, 5, 70, 2, 3., 0)
(1,12 (0, 2, 1, 7, 5, 60, 1, LS, 1) [3, 41 (1. 2, 7, , 31. 270, 0 3. 3)

(2. 41 (1, 4, 5, 10, 16, 210, 1, 3.0, 2) (3, S] (1, 1,10, 12, 1 5, 0 ,2.6, 1)

[2,101 (0, 4, 6, 10. 6, 70, 1. 8., 1) 3. 61 (0,5, 9, 0, 27, 320, 0. 2.6, 1)

[3, 7] (0, 1. 4. 10. 23. 130, 1, 2.6, 3) 3, 91 (0, 1, 6, 3, 15, 170 1, 3.1, 1)

(3,8] (06, 6, 0, 24, 10, 0, 2.6. 1) [3,10] (0, 2, 8, 0, 21, I3,0 , 3.4, 2)

[4. 8] (1, 6, S, 0, 25, 170, 0, LO, 2) [3,111 (1, 1, 5, 3, 1, 210, 0. 4.0, 1)

14, 9] (1. 1. S. 3, 16,1 0, 1, L. 2) [3,22] (0, 3. 4, 4, 2,130, 1. 41. 1)

(4,10 (1, 2, 7, 0. 22, ,140, 0. L, 3) 4, S] 7., 1 9, 12, 16. 26, 0,1L0, 2)

[4,12 (1, 3, 3, 4, 21, 140, 1. 2A. 2) 4. 61 (1, S. , 0 , 33, 00,1L0, 2)

(5, 8] (1, 5, . 12, 9,1 ,0, 0.0, o) (4. 71 (1, 1, 3, 10. 24, 140, 1, 1.0, 4)

(5, 9] (1, 0 8.15, 0 16, 0,.5, o0) (4,11] (, 1, 4, 3. 16. A 0. 2.4, 2)

[5,10] (1, 1. 10, 12, 6, 1 0, 0.8, 1) (5, 6 (1, 4, 11. 12. 12, 31, 0, 0.0, 0)

[6, 7] (0, 4. 5, 10 2, 190, 1. 0.0, 2) [5, 71 (1,0. ,6, 22, 8, M 10.0, 2)

[6,10] 0. 5, 9, 0. 18, 190, 0, 0., 1) 5,11] (2, 0, 7, 15, 0, 25, 0, L4, 0)

[612] (0, 6, 5, 4, 17, 190, 1, LS. 0) (5,12] (1, 2, 6. 16, 5, 125. 1, 1.5, o)

[7, 8] (0, 5, 2. 10, 17, 30, 1. 0.0, 2) (6, 81 (0, 9, 7, 0, 21, 220. 0.0, O0)

[7,10] (0, 1, 4. 10. 14, 0, 1, , 3) (6, 9] M. 4, 7, 3, 12, 230, 1,0.5, O0)

[7,11] (1, 0. 1, 13, 8, 80, 1. L4, 3) [6,11] (1, 4, 6. 3, 12, 270, 0, 1.4, O)

[(, 91 0, 5, 4, 3, 9, 0, 1, .5,0) 7, 9] 0, , 2, 13, 8. 40, 2, o, 2)

(8,101 O (, 6,6,0 . IS, 30, 0, 0.8, 1) (7,121 (0, 2, 0, 14, 13, 0, 2, , 2)

(8,11] (1, 5, 3, 3, 9, 110, 0, 14, 0) [,M] (0, 7, 2, 4, 14, 30, 1, 145 0)

(9,10] (0, 1, 6 3. 6, 40,1, 13. 1) (9,1211(0 2, 2,7, . 40,2, 2.0,)

(9,11] (1, 0, 3, 6, 0 120, 1, 19, 0)
[10.11] (1, 1, 5, 3, 6, 80, 0, 2.2, 1)

110,12] (0 3, 4, 4, 11, 0, 1, 2.3, 1)

(11,12] (1, 2, 1. 7. S, 8, 1. 2.9, 0)

The main principle of this part of the algorithm is that a subset can be feasible only if all the
*subsets of it are feasible. For example, the subset consisting of operations A, B, and C (which is
denoted [A, B, C] for brevity), might be feasible only if the subsets (A], [B], [C], [A, 1, [A, C],
and [B, C1 are all feasible. This is similar in obviousness and spirit to the "Principle of Optimal-
Ity" on which Richard Bellman bases the art of dynamic programming. 6 However, since the
customary functional notation of dynamic programming lends Itself awkwardly to this problem, It is
not used here.

6 Bellman, Richard, Dynamic Programming, Princeton, Princeton U. Press, 1957, p. 83.

Procedwe

(To illustrate the following steps, an example Is carried out in various tables
throughout the description of the algodtw. The raw date- -the opeuation and

system vectors- -appear in table L.)

iniiulywt h ytmvcoedb ic4a l prtc etr hc r oFirst, all of the feasible subsets of index I ean selected by competing the operaticn vectors
idvdlwihthe system vector, (fiur 1).yac disoeddoeatgc vetr eretsa operationvetr whicho
ca thpil e c e ue o h i system vectd (figurh is discarded. Theaio feasiblees nt a opere-
catio s il em beseued in the spciisc 1,... N, where Ns isc .t he meofeifee ra
oprtions. The ordber o each spe ifi sfie asoa its ... N ber in this seqmbe (Thiferder i
otinfi.n The o tionac ofpert osdfihed asgitmbert in uss qeny .o eliin eri

redundancy in the following.)

Then all of the feasible subsets of Index 1 (Individually schedulable operations) are listed in
order with their coaresponding (operatis) vectors. (In table 2, one operation Is discarded becmuse
of an overflow in the fifth resource tyV*-)

To find all of the feasible subsets of iadex 2, e*A* feasible subset of Index 1- -starting with
operations 1, 2, and proceeding up to N - I- -is added vectoawise to each feasible subset of index
1 and of higher order, and is compered with the system vector for compatibility.

In the example, the following calculation occurs:

The operation vector for operation 1 Is (0, 0, 1, 3, 0, 60, 0, 0.0, 1),
and for operation 2 Is (0, 3, 2, 10, 0, 70, 1, 2.0, 0).
The (combined) vector for subeet [t.,2] Is Ome (0, 3,3,13, 0, 130, 1, 2.0, 1)
which < the system vector (1, 6, 10, 15, 25, 220, 1, 3.0, 3),
and soth subset [1, 2] is feasible.
The process is repeated far (, 3,. 41,][2, 3], . . . , and (11, 12]
so that each pair of operations in tested tfe asibility once and only once.
The pairs that are not feasible are discarded and the feasible sets of Index
2 are listed with their subset vectors in order of the lower ordered operation
of each subset and then in order of the remaing operation. (See table 3.)

The subsets of a given index are Misted post easily in order of lowness of the lowest ordered
operation of each subset, then the lowness of the second lowest operation, etc. (Note the order In
table 4.) This ordering is automatic If each list is read from the "top" and if each subset is added
at the "bottom" of its list when it is found feasible.

The procedure for finding feasible subsets becomes more complicated for higher indices. This
complication, which reduces very effectivrely the lenth of time required for this process, Is based
on the main principle, stated above, which requime in particular that a subset S of Index H might
he feasible, and hence should he teste for feasibility, only if its subsets of index H-1 are them-
selves feasible. These subsets are designted 4s follows:

S1 . S without its highest ordered operation

S2 - S without its second-highest ordered operation,

75ch ann oprtion Indietes an lacosteey Is the iss whic my require tethebums.juisiusa and silting
betore the algorithm is meaumd or metood. hs hisone, a "*ecal prit boo. the ompsieu -sand passby
ahalt to the pos.- -mig% be appropriae.

TEST SUBMITS

FEASIBLITY S.xI E 1xk

LO~ UL

OPERSIO NO YET RED{ EDINTVCO

S? THI OPERTIA

NUBRTEFAMU. OPEATONSI.

INTtUfOF IE XUm OF DM

ISTI rATIE ERU 23D TI~IN t I N-H

T O= A AOHR -

aUCISTEM AMMR SU i.AT FOLLON IN TE

US AS4YUTL N~E SSS? No WER ANYgTN

09DU N

Table 4. Subsets of Indexes 3, 4, and S

osblwe Sbs . h of ln" 3 Ubwb el loex S Teuie end ISsodd

1. 2.103 (0, 4. 7. 1.,. ,13, 1. , 2) [1, (1, 4. .1,. 16, 2706 1 .0.)
t1, 3. 1 (0. 6. ,. 3. 24. 220, . .6, 2) [1. 3 7 (0. 1. S. 13. ,23,190. 1. 2.6 4)
(1, 4,12 (1, 3, 4. 7, 21, 20, 1, ,.) 1, 4, 81 (1,6 ,6, 3, 20,20. 0. 1.0, 3)
[1, s. 8] (1. s. 9. 15, 9, 21S. 0, u. 1) (1.4,9) (1. 6. 6. 16C2W 1. 1.s. 3)

[1, 7. 8 (0, s. 3. 13, 17, 90, 1. .0, 5) [1. 4,10 (0. 2. 1. 3. 22, 200, 0. 1.s, 4)

[1. 8,91 (0, S. 5. 6. 9. 130, 1. 0.8, 1) [1. s. 91 (1, 0. 9. 18. 0. 225. 1. o.s. 1)

[1,8,101 (0. 6. 7. 3. 15. 90, 0, U. 2) [1. .10 (1, 1. 11. 15, 6, 15, 0. 8. 2)

i1, 8.111 (1. S. 4. 6. 9. 170, 6. 1.4. 1) [1. 7,101 (0, 1. S. 13, 14, 60, 1. 0.8, 4)

[1. 9,101 (0, 1. 7. 6. 6. 100. 1. U. 2) [1. 7.11 (1. 0. 2. 16, 8, 140, 1. 1.4, 3)

1, 9, 11] (1, 0, 4, 9, 0,o. 1. Lt, 1) 1, 4,10 (1, , 0, 10, 22, 210, 1, 3.8, 8)

(1,10,111 (1, 1. 6. 6. 6. 140. 6, 2.2 2) (3, 7. 1 (0, 6. 6. 10, 32, 160, 1. 2. 3)

[1,10.12 (0. 3. S. 7. 11, 40 1. 2.3. 2) [41 3 (1. 7. 9. 0. 31, 170, 0, 1A, 3)
11.11.12] (1, 2. 2. 10. s. 140. 4 L.. 1 (41.12 (1, 4. 7. 4. 27, 140. 1. 3.3. 3)
[4,8. 9 (1, 6. 7. 3. 25. 210. 1. 1.1,2) [) . ,11 i. . 1 . 12,. 1 155,0. U. 1)

[4. 9,10 (1, 2. , 3. 22. 1, 2.6) , 0,1 .1, , 12.15.6 . 1 1. IA 1)

[s 8, 91 (1. s. 10. 15, 9, 196, 1, O.s, 0) (6, 7.0 (0. s, 9, 10. 26. 190, 1, .8, 3)
[7, 8,10] (0, 6. 6. 10. 23, 36 1. .8 3) [6.6,1.21 (0. 7. 9, 4, 23. 190,1 , 2.3, 1)

[7, 8,11] (1, S. 3, 13, 17, 110, 1, 14. 2) (16,11,12 (1, 3, S. 7, 11, 00, 1. 37. 1)

[7,10.11] (1. 1, S. 13. 14, 0, 1, 2.2, 3)

8, 9, 10] (0. 6. 8, 3, 15. 70, 1. 1.3, 1)

I8. 9,11] (1, S. S, 6. 9, 1SO 1, 1.9, 0)

[8, 10, 11] (1, 6, 7, 3, 15, 110, 0, 2.2, 1)

[9,10,11] (1, 1. 7, 6, 6, 20, 1, 2.7, 1)
____ _ Pssil e bs... of ledT 4 Ho Wbst Toeo .4 4 Wwo Dieeded

[1.8, 9,101 (0, 6, 9, 6, .15, 130, 1, 1,. 2)

[1, 8, 9,11] (1, S, 6, 9, 9, 210, 1, 1.9. 1)

[1,i8, 10, 111 (1. 6, 8, 6. 15, 170, 0. 2.2, 2)

[1,9, 10,111 (1. 1, 8, 9. 6. 1M, 1, 2.7, 2)

[7,8,10,111 (1, 6, 7, 13, 23, 110, 1, 2.2, 3)

[8, 9, 10, 11] (1, 6, 9, 6, 15, 150. 1, 2.7, 1)

Possile ses of Led 5 Ne Sobset Tested *fed. S Wo. 0h ded

[1. 8. 9, 10, 11 (1, 6, 10, 9, 15, 210, 1, 2.7, 2)

S3 - S without its third-highest ordered operation,

SH - S without its lowest ordered operation.

For example, if S - (1, 8, 9, 10, 11], then SI - [1, 8, 9, 10],

S2 -[1, 8 9,1 11], S3 - [1, 8, 10, 111, S4 -(1, 9, 10, 11

and S5 - [8, 9, 10, 11].

Before any detailed description of this procedure, some comments about these subsets are in
order.

1. Because of the system described above of ordering subsets of a given index, S1, S2 , $ 3 ... ,.
snd

5 H appear in the list of fesibl. subsets of index H-1 in the same order, although not
necesarily consecutively.

2. s, and S2 differ only in their highest ordered operations.

10

3. S actually consists of subset S, plus the highest ordered operation of subset S2 .
4. The definitions imply that any two subsets of index H-I which satisfy 2 determine a unique

S of index H in the manner of 3. These subsets are S, and S2.

Each subset of index H that might possibly be feasible must then be derivable, in the manner of
3, from two unique feasible subsets of index H-i.

In brief, the procedure involves selecting all possible combinations of S and S2 from the list
(of feasible subsets of index H-i); determining S, S3 SH from the definitions and comments
above; and then--if S3 , ... SH are all listed as feasible- -testing S directly for feasibility.

In detail, consider the first subset in the list as a possible subset S for some subset S. If
it is such, S2 is another subset in the list. Because of comments 1 and 2 and the ordering of this
list as described above, all subsets in the list which can possibly function as S2 , with respect
to this S1, must follow S consecutively in the list, in a group.

For H = 3, in the example, select S, = [1, 2].
The only possible subsets that can be S2 are
(1, 31, [1, 41, [1, 51, [1, 71, [1, S1, [1, 91, [1, 101,
[1, Ill, and[[1, 121.

The first of these possible subsets (if any) is selected and considered temporarily as S2 .

The corresponding S is determined from S, and S2 , and then S3, ... $H are determined from
S and looked up in the list to see if they are feasible subsets of index H-I. If S3, ... SH are all
listed, then subset S is tested directly (by resource types) to determine its feasibility, and if it is
feasible, it is listed as a feasible subset of index H-I.

Returning to the example, where S, = [1, 2] and S2

is taken as [1, 3], the subset S is [1, 2, 31 and S3

is [2, 3]. Since S3 is feasible, S itself is tested
and listed as a feasible subset of order 3. (This
procedure is outlined in detail in figure 1.)

If some Si is missing from the list, then it is not feasible and by the main principle neither is S
feasible, so there is no need to look up any more Si's nor to test S itself for feasibility. At this
point, the next of the possible subsets (if any) described in the last paragraph is selected and
considered temporarily as S2 instead. The process described in this paragraph is repeated with
all the possible S2 's for the S, under consideration.

After all S2's have been considered, or if there are no subsets at all which can possibly
function as S2 with respect to this S, the process in the last two paragraphs is repeated with
the subset following S in the list of feasible subsets of index H-I considered as a possible S.
This procedure tests and lists each feasible subset S in its proper order. The restrictions involv-
ing the ordering of various operations eliminate calculations for redundant permutations of subsets.
The example shows, as might be expected, that very few nonfeasible subsets ever progress far
enough in this process, before being discarded, to be tested directly for feasibility. The most
time-consuming part of the procedure is thus frequently avoided.

In the same way that this procedure derives the list of feasible subsets of index H from the
list of index H-1, it is repeated to derive the list of index H + I from the list of index H; and so
on, until some index K is reached such that there exists at least one feasible subset of index K
but none of index K + 1. K represents the maximum number of operations that can be scheduled

11

simultaneously. At this point the feasible subsets have all been determined, and the algorithm
proceeds to part 11.

Part If: Selection .1 Schedules

This part of the algorithm subdivides the set of operations into a miimum number of disjoint
feasible subsets. Since each feasible subset corresponds to a subset of operations that can run
simultaneously, this minimum number of subsets represents a minimum total scheduled time for all
the operations. By this means the algorithm finds one or more optimal schedules.

In the example of part I, some possible subdivisions (which are not necessarily optimal) are:

[11 [2] [31 [4] [5] [6] [7] [81 [91 [10] [11] [12],
[1, 2] [3, 7] [4, 8] [5, 911[6, 10] [11, 12],
[1, 8, 9, 111 [2, 4] [3, 7] [5, 10] [6, 121, and
[1, 8, 9, 10, 111 [3, 81 [4, 12] [5] [6] [7].

The only information necessary for this part In the output of part I, the number of operations, Ny,
and the listing, by index, of all feasible subsets. (See table 5, for the example).

Table 5. Feasible Subsets of Indexes 1 Through 5

FbesIbi Sob.... of Index I

ill 121 131 141 151 161 (71 [a] [91 [101 fill [121

Prnlbi. Subsets of Index 2

11, 21 fl. 31 (1. 41 [1. 51 (1, 71 (1, 81 1 1, 9] [U. 101 [1, Ill

11. 121 [2, 41 [2. 101 [3. 71 [13. 81 [4. 81 [4, 91 [4, 101 (4, 121 [5.8]1

15. 91 15. 101 (6, 71 [6. 101 1 6,121 1 7, 81 (7, 101 [7, Ill [a. 91

F..lbi. Subsets of Index 3

11.2, 101 [1,3, 81 11,4. 121 [1, 5, 81 11. 7. 81 [t. S. 91 [1. 8. 10]

11,8, iii (1.9, 101 [1,.9.11ll[1, 10.111 [1, 10.'121 [1. 11, 121 [4, 8, 91 [4, 9.101

15,8. 91 [7. 8, 101 [7,.8,111l [7. 10, lII (8, 9, 101 (a. 9, 11) [8, 10, 111 [9, 10, 111

FeusIhi bb..hs .4 Index 4

11'.,101 11,8,9,71 1l 1,8,. 10, 111 11, 9. 10, ill [7,. 8,10, 111 [8. 9, 10, 111

FeeuIbe Subset4 ofIdex 5

(1.8, 9. 10, ill

Procedure

With some number L I, known not to be prester than the minimum number of subsets In a solu-
tion, a survey in made to determine whether there exists a collection of L, disjoint feasible
subsets which include each schedulable operation.

Since each of the N operations in such a collection must appear once and only once (the
subsets being disjoint), the sum of the indices of the L, subsets most be N. Therefore, nose of
the desired collections Is missed if this survey Is limited to collections of L1 disjoint feasible
subsets whose indices add up to N. I

If no such collection Is found for L1, the survey in repeated for L2 - L,+ 1, L3 = L2 + 1,
etc., in place of L, until at least one collection is found for some L-deslgnated ans OUMI
Each collection represents an optimal schedule with the openations scheduled simultaneously in

12

subsets and with the subsets scheduled in any order. (The order might depend on additional con-
straints not mentioned in the problem formulation above. See the discussion of this in the
generalization below.) Loptimum is the optimum time for the scheduling of these operations, in
terms of the unit of time that each of these operations is supposed to last.

Before discussing any further details of this procedure, it is necessary to define a special
classification of the collections of subsets under consideration. Each of these collections can
be classified according to how many of its subsets have index H, for each value of H in the range
1 < H < K, K being the index of the largest feasible subset found in part I. This classification
is defined as a configuration and it is represented mathematically by a K-dimensional configuration
vector Xa = (Xa1, xa2 ... XaK) where each XaH is the number of subsets in the collection which
have index H. (These vectors should not be confused with those in part I. The only property in
common between the two concepts is that each represents a string of numbers to be handled in a
certain way.)

The configuration vectors for the subdivisions, or collections, cited above are

(12, 0, 0, 0, 0),
(0,6,0, 0,0),
(0,4,0, 1, 0), and
(3, 2, 0, 0, 1), respectively.

K K
Since L x ra,i and N = i • xa, for any configuration vector XaP a configuration

pi=1 i=1

vector can generate another configuration vector with the same L and N under the following type
of transformation:

For any i and j such that 2 < i < j< K - 1

and such that x., and xaj are greater than 0,

(1) subtract I each from xai and Xa, if i < j, or subtract 2

if i= jandif xa. i > 2; and (2) add Ito xa, i _ 1 and xa.j+ 1.

Given any L and N, there is a configuration vector which can generate all of the other con-
figuration vectors by a sequence of transformations of this type. (A few experiments with this
process will make this last statement obvious to the reader.) This vector, which is referred to as
the primary configuration vector is determined numerically as follows:

= L- N+ L

X[N ; + N - L [r

and all other x's = 0.

The primary configuration vector represents a configuration in which all of its subsets are
"compressed" into one or two adjacent indices, so that no other configuration vector can possibly
generate this vector. On the other hand, the last configuration vector in each hierarchy has at

8[1u is the highest integer S u.

13

most one nossero coefficient, excluding the first and last coefficients, and this coefficint is sot
grater then 1, so It in not possible for this vector to genmerte another vector. The confgurstion
vectors for LI, L2 , L, and L4 in the example are shown, with the generative relationships among

them, in figure 2.

The folowing details of this procedure are illustrated in the accompanying flow chart (figure
3)9.

PORN - 12, K- :

LI -3 (0, 0, 0, 3, 0) (PRIMARY CONFIGURATION VECTOR)
I

(0, 0, 1, 1, 1)

(0, 1, 0. 0, 2)

L2 -4 (0, 0, 4. 0, 0) (PRIMARY CONFIGURATION VECTOR)

(0, 1, 2. 1,

(1, 0, 1, J2 0) 02, 0, 2. 0)--(0 2 1,' 0. 1)

(1 , 2, 0 1)

0

(2, 0, 0, 0, 2)

L$ - S (0 3 2, 0, 0 (PRIMARY CONFIGURATION VECTOR)
(0, 4, 0,. -0 (1-2, 1. 1, 013, 0. 0)

(1, 3, 0, 0, 1)-.(2, 1, 1, 0. 1) -- 2, 0, 2, 1, 0)- .2, 10. 2, 0)
(3 , 0.33""""3o 1, 1)

L4 -6 (0, 6, I' 0, 0) (PRMARY CONnGURATION VECTOR)

(1, 4, 1, 0, 0)

(2. 2, 2, ,0) ((2 3, 0 1 0)

(3. 0, 3. 0, 0)-.(3. 1, 1. (3,2 0, 0. 1)

(4, 0, 0, 2, 0)-(4, 0. 1, 0, 1)

NOTE: ARROWS REPRESENT GENMERATVE
RELATIONUIWS SMZZEN VECTORS

Figure 2. Configuration Vectors in the Example.

90i.-e-e the above exposltion was written, it has been learned by the author that a very fundamntal concept
underlying thie algretthm is known as the partition function of additive number theory. An alternate
generative poea for conflguration vectors due to Hindenburg appears in History ol /be Theory ofNumbers,
Volume II, Diopkanine Analysis, p. 106, by L. E. Dickson. 1920. Carnegie Institution. Washington, D. C.

14

WITA.S. S.0. COOM
LAST ROMT ON LIST

LIT A - A PUS 711 LET a-.I

DZTWNNE LET 8 -8.+INs*
TC

asom: Z--m MmTZLu DETERMIE I1f IAL CON-
PUZCIUNU MM351 IIORATION VICTOS X,

TEST TH

Lrnb n

CONURUATION Dnx,0

VMCTOR ON= no
C7ONNM

FOn 031131MATION =0I PR IOVCTRX
or OMhE WCTORS

TEST~~~~~~~~~~~~~1 THE AR hR TUSO TSSUE AS9 AS SOML ICOHRT' AE133
C~mGUATION INDEXid FOLOUDI R~ -SWSETIS/ &DWAX

VECTO IUANDERD
TRZ UBSES O INDX M

FOR 1 IS..*1?

CONSIDERAION

Tiue3 lwCatfrPatI fteAgrtm

IOLIMTE

co~nURATON s R.MUONT FI1n

Lot L1 be the smallest number of feasible subsets (disjoint or not), whose indices cas add up
at least to N. Its value can be determined simply by adding the indices of the highest indexed
subsets, one at a time, until their cumulative index total is at least N. The number of subsets
whose Indices are addedis an appropriate value for L1 . (Since these particular subsets are not
necessarily disjoint, this does not imply that a solution has been found.)

Taking the subsets in the example in order of highness of Indices, one at a time,
L 1 IsI calculated as follows:

Subsets Indices Cumulative Index Total

[1, 8, 9, 10, 11] 5 5
[8, 9, 10, 11] 4 9
[7, 8, 10, 111 4 13

Since only three such subsets are required to make the cumulative index total at
least 12, LI is taken as 3.

Given L, K, and N, the primary configuration vector is determined as above. This configura-

tion vector, X1, is the first of a small list of configuration vectors to be computed.

Determine for the primary configuration vector, all vectors which this vector generates directly.
These vectors are listed after X1 . Each vector on the list is used as a generator and any new
vectors generated are added to the list. When every vector has been used as a generator, the list
is complete.

In the example, where L = L 2, when configuration vector (0, 0, 4, 0, 0)
is under consideration, only the vector (0, 1, 2, 1, 0) is generated and
added to the list. When the latter vector is under consideration, vectors
(1, 0, 1, 2, 0), (0, 2, 0, 2, 0), (0, 2, 1, 0, 1), and (1, 0, 2, 0, 1) are
added- -and so on, until all of the configuration vectors are generated
and listed for L2.

Next, the configuration vector under consideration is tested to see if there is any collection
of disjoint feasible subsets satisfying that particular configuration.

For this configuration, let *H1 be the index of the largest indexed subset, H2 for the next
largest, etc.

For example. if the configuration vector is (0, 1, 2, 1, 0);
Hi 4, H2 = 3, H3 - 3, and H4 - 2.
Similarly, for the configuration vector (0, 0, 4, 0, 0),
Hi - H2 =H3 - 14 .- 3.

Now, considering the feasible subsets in a single list (with the subsets of higher indices
listed earlier) a systematic survey is made by trying to find the necessary number of disjoint
subsets of each index, the higher indices first. This procedure appears in detail at the bottom of
figure 3.

For some unsatisfactory configurations, this procedure is very short since it determines very
quickly that the specified number of disjoint subsets of a certain index may be more than can be
provided.

16

The following remarks follow directly, for the example, from table 5:

No two feasible subsets of index 4 or 5 are disjoint, hence there can be
at moat one subset of index 4 or of index 5, but not both in any configuration tested.
This restriction rules out the following configurations of figure 2:

(0, 0, 0, 3, 0), (1, 0, 1, 2, 0), (2, 0, 0, 0, 2),
(0, 0, 1, 1, 1), (0, 2, 0, 2, 0), (2, 1, 0, 2, 0),
(0, 1, 0, 0, 2), (1, 1, 0, 1, 1), and (3, 0, 0, 1, 1).

If there is a feasible subset of index 4 in a configuration, there should be no more
than one disjoint feasible subset In that configuration of index 3. This restriction
eliminates

(0, 1, 2, 1, 0) and
(2, 0, 2, 1, 0) additionally.

If there is a feasible subset of index 5 in a configuration, there should be no
subsets of index 3.

This further eliminates

(0, 2, 1, 0, 1),
(1, 0, 2, 0, 1), and
(2, 1, 1, 0, 1).

Since no group of four subsets of index 3 are disjoint, vector (0, 0, 4, 0, 0)
is also eliminated.

All of the configuration vectors for L, = 3 and L2 = 4 are eliminated. So it

is necessary to examine all of the refraining configuration vectors for L3 - 5.

(0, 3, 2, 0, 0)

If [1, 2, 10] and [4, 8, 9] are considered as subsets of index 3 in this
configuration, the only subsets of index 2 disjoint to these subsets are
[3, 71, [6, 7], [6, 12], [7, 11], and [11, 121.
No three of the latter subsets are disjoint.
If [1, 2, 10] and [5, 8, 9] are the subsets of index 3,
instead, the possible subsets of Index 2 are
[3, 71, [4, 12], [6, 7], [6, 12], [7, 11], and [11, 12].
For each of the following combinations of two disjoint subsets of
index 3 there is no group of three subsets of index 2, disjoint to that
combination, which are disjoint to each other

[1, 2, 10] [7, 8, 10] [1, 5, 8] [4, 9, 10]
[1, 2, 101 [8, 9, 11] [1, 5, 8] [7, 10, 11]
[1, 3, 8] [4, 9, 10] [1, 7, 8] [4, 9, 101
[1, 3, 8] [9, 10, 11] [1, 7, 8] [9, 10, 11]
[1, 4, 12] [5, 8, 9] [1, 8, 9] [7, 10, 11]
[1, 4, 121 [7, 8, 10] [1, 8, 11] [4, 9, 10]
[1, 4, 12] [7, 8, 111 [1, 9, 10] [7, 8, 111
[1, 4, 12] [7, 10, Ill (1, 9, Ill (7, 8, 10]

[1, 4, 12] [8, 9, 10] [1, 10, 11] [4, 8, 9]
[1, 4, 12] [8, 10, 11] [1, 10, 121 [4, 8, 9]
[1, 4, 12] [9, 10, 11] [1, 10, 12] [5, 8, 91 (Con'd)

17

[1, 10,12] [7, 8, 111 [1, 11, 121 [7, 8, 101 s

[1, 10, 12] (8, 9, 11] [1, 11, 12] [8, 9. 10]

(1, 11, 121 [4, 8, 91 (4, 8, 91 [7, 10, 111
[1, 11, 121 (4, 9, 101 [4, 9, 10 [7, 8, 111
[1, 11, 121 [5, 8, 91

However, the following solutions do exist:

[1, 3, 81 (7, 10, 111 [2, 41 [5, 91 (6, 12],
[1, 5, 81 [9, 10, 11] [2, 4] (3, 71 [6, 121,
[1, 10, 11] (5, 8, 91 [2, 41 (3, 71 [6, 12], and
(5, 8, 91 [7, 10, 111 [1, 31 [2, 41 [6, 121.

(1,2,1, 1,0)

Considering [8, 9, 10, 11] as the subset of index 4 in this collection, the
only disjoint subset of index 3 is (1, 4, 121 and the only subsets of index
2 disjoint to each of these subsets are [3, 71 and [6, 71. But [3, 71 and
[6, 71 are not disjoint. The only other subset of index 4 disjoint from
some subset of index 3 is (7, 8, 10, 11], and the only disjoint subsets of
index 3 is [1, 4, 12] again. The only disjoint subset of index 2 is [5, 9],
so there is no solution with this configuration.

(1,1,3,0,0)

The only group of three disjoint subsets of index 3 in
(1, 4, 121, [5, 8, 91, and (7, 10, 111. But there is no disjoint
subset of index 2.

(1, 3,.0, 0, 1)

The only subset of index 5 is (1, 8, 9, 10, 11]. The subsets of index 2
disjoint to this subset are [2, 4], [3, 7], [4, 121, [6, 71, and [6, 121. Also,
the only disjoint group of three of these subsets is [2, 41, [3, 71, and
[6, 12]. Therefore, the only solution of this configuration is
[1, 8, 9, 10, 111 [2, 41 [3, 71 (6, 121 [5].

(0,4,0,1,0)

If [1, 8, 9, 10] is considered as the subset of index 4, there are no four
disjoint subsets of index 2. However, the following solutions do
exist with the other possible subsets of index 4:

[1, 8, 9, 11 [2, 4] (3, 7] [5, 101 [6, 121,
(1, 8, 10, Ill [2, 41 [3, 7] (5, 91 [6, 121,
[1, 9, 10, 111 [2, 4] (3, 71 [5, 81 (6, 121,
[7, 8, 10, 111 [1, 31 [2, 41 [S, 91 (6, 121, and
[8, 9, 10, 11] [1, 51 [2, 41 [3, 71 [6, 121.

GENERAL FORMULATION OF THE SCHEDULING PROBLEM

The assumptions in the initial formulation restrict the algorithm too much indeed for most
scheduling problems. The following modifications eliminate or mitigate some of the restrictions
to make the algorithm versatile enough for most, if not all, situations.

18

Medilfication 1: Specole Time Aasignmes

It was assumed initially that each operation could be scheduled for any time (amumptlon 2).
The starting times for some operations are actually limited to some short span of time and it is
folly to consider "feasible" subsets which have two operations with no such time in common. To
eliminate such subsets fom even being considered as feasible, it is sufficient to invent an addi-
tional resource type for each pair of operations with no scheduling time in common, and to choose
1 to be the corresponding coefficient for the system vector and each of the vectors in the pair. An
each "optimal solution" is found in part H of the algorithm, an attempt should be made to sched-
ule each subset at a time satisfactory to all of its operations. If this is found to be Impossible,
the optimal solution under consideration should no longer be considered as such and should not be
listed. The algorithm should resume as if it were still searching for a solution. If such a sched-
ule is found, the optimal solution should be listed in a form suitable for reading as a schedule.

Modification 2: Operations of Longer Duration

Most of the operations that last longer than one unit of time generally require and monopolize
different resources for different segments of time. Some resources are required in advance of
execution for special adjustments. On the other hand, certain resources are tied up afterwards for
mop-up jobs, such as collection of data (see figures 4 and S).

Unfortunately, this kind of operation violates assumption 1 In the initial problem formulation.
A lighter restriction in necessary, so the following assumption is substituted for the former one:

7. An operation may last more than one unit of time, but its resource requirements must remain
constant within time segments which are Integer multiples of the selected unit of time.

Figure 4 shows such an operation, where the number of units of each resource changes from
one unit of time to the next.

The procedure for this modification Is mainly to split each long operation into smaller opera-
tions of one unit of time in duration, each smaller operation representing the original operation
during one particular unit of time.

Of course, since these smeller operations must run at different times, modification 1 should
be applied to those operations as a group. I-

For example, In figure 4, the total duration of operation A is four units of time, so four
smaller vectors

(1, 0, 6, 12, 0, 125, 0, 0.0, 0),
(0, 3, 2, 10, 0, 70, 1, 2.0, 0),
(0, 0, 1, 3, 0, 60, 0, 0.0, 1), and
(0, 0, 0, 10, 8, 0, 1, 0.0,2)

should be substituted for it.

By a contrivance, these vectors are identical with the vectors for operations 5, 2, 1, and 7,
respectively.

In figure 5, operation B is shown to be equivalent to the sequence of operations 8, 10, and
6--in that order.

19

UNITS REQUIRED III
OF ru__ __ __ _ I II
RESOURCE TYPE: I UNIT I I imar mE __________ I _________

UNIS REQUIREDI
OF SECOND UII
RESOURCE TYPE: 3 UNITS

UNITS REQUIRED ' IoII
OF THIRD
RESOURCE TYPE: 6 UNITS 2 UNITS I!UN I

UNITS REQUIRED
OF FOURTH
RESOURCE TYPE: 12 UNITS 10 UNITS 1" 3 UNITS 10 UNITS

UNITS REQUIRED I I I
OF FIFTHI I
RESOURCE TYPE: I UNI

UNITS REQUIRED I I

OF SIXTH
RESOURCE TYPE: 125 UNITS 70 UNITS 60 UNITS _

UN173 REQUIRED I I
I T~

I I I I

UNITS REQUIRED IRESOURCE TYPE: 2. UNITS1UI

UNITS REQUIREDl II

OF NINTH I
RESOURCE TYPE: 1 UNIT 2 I

UNTSF IE I I I I~

-1 0 +1 +2
(LAUNCH TIME) a

TIME IN ARBITRARY UNITS

Figure 4. Example of an Operation With Fluctuating Reswce Rqpiremets That the Algorlihm
Con Schedule Under Modification 2 (Operation A).

The problem of scheduling operations A, B, 3, 4, 9, 11, ana 12 into a segment of time as abort
as possible is equivalent to the example included in the original exposition of the algorithm above
except for the following constraint.

Operations 5, 2, 1, and 7 must follow in that consecutive order and 8, 10, and 6 must also.
Each "optimal solution" found in the algorithm should be tested for this constraint when it in
tested for the constraint of modification 1.

The following solution from the example satisfies this constraint. The subsets ar taken in a
satisfactory order.

(5, 9] (2, 41 [1, 3, 81 [7, 10, 11] [6, 12]

This is the only optimal solution to this problem.*

'NOTE: Frther conslideration of mdlfication 2 has been given to the problem snce the departure of the
author. The deo-composltion of operatiou Into nmsll-leth otPtions satisfying assumptio 1
my cause an excessive computer load In pert I of the algorithm.

20

UNITS REQUIRED I I
OF FIRST I I I
RESOURCE TYPE: I I I -

UNITS REQUIRED
OF SECOND
RESOURCE TYPE: 5 UNITS I UNIT 4 UNITS

UNITS REQUIRED
OF THIRD

RESOURCE TYPE: TNITS 4 UNITS 5 UNITS
I I I I

UNITS REQUIRED I I I
OF FOURTH I I I
RESOURCE TYPE: I i I

UNITS REQUIRED
OF FIFTH
RESOURCE TYPE: 9 UNITS 12 UNITS

UNITS REQUIRED I
OF SIXTH I FY1
RESOURCE TYPE: 3 UNT 190 UNITS

i I I
UNITS REQUIRED I g i
OF SEVENTH g I I
RESOURCE TYPE: i I I

I I
I I

UNITS REQUIRED I I
OF EIGHTH I I
RESOURCE TYPE: I 0.8 UNIT

I IUNITS REQUIRED III

OF NINTH I I
RESOURCE TYPE: I UNITI

-1 0 +1 +2

(LAUNCH TIME)

TIME IN ARBITRARY UNITS

Figure 5. Example of an Operation With Fluctuating Resource Requiroments
That the Algorithm Can Schedule Under Modification 3 (Operation B).

Modification 3: Change in th* System

Assumption 6 in the initi -1 problem formulation is restrictive in a situation where the opera.
tion of certain resources may be preempted at certain times of the day by maintenance or othr
nonoperating tasks. Nonoperating activities can be accounted for simply by adding artfical
"operations" which must be scheduled at the appropriate times and which require whatever
resources are in question.

21

